1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
|
/*
* libfud
* Copyright 2024 Dominick Allen
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FUD_VECTOR_HPP
#define FUD_VECTOR_HPP
#include "fud_allocator.hpp"
#include "fud_assert.hpp"
#include "fud_config.hpp"
#include "fud_option.hpp"
#include "fud_result.hpp"
#include "fud_span.hpp"
#include "fud_status.hpp"
#include <cstddef>
#include <functional>
#include <new> // IWYU pragma: keep (placement new)
namespace fud {
template <typename T>
class Vector {
static constexpr size_t ElementSize = sizeof(T);
static constexpr size_t Alignment = alignof(T);
public:
constexpr Vector() noexcept = default;
constexpr explicit Vector(Allocator& allocator) noexcept : m_allocator{&allocator} {}
constexpr Vector(const Vector<T>& rhs) = delete;
constexpr Vector(Vector<T>&& rhs) noexcept :
m_allocator(rhs.m_allocator), m_data(rhs.m_data), m_length{rhs.m_length}, m_capacity{rhs.m_capacity}
{
rhs.m_allocator = nullptr;
rhs.m_data = nullptr;
rhs.m_length = 0;
rhs.m_capacity = 0;
}
~Vector() noexcept
{
static_cast<void>(cleanup());
}
Vector& operator=(const Vector<T>& rhs) = delete;
Vector& operator=(Vector<T>&& rhs) noexcept
{
if (&rhs == this) {
return *this;
}
static_cast<void>(cleanup());
m_allocator = rhs.m_allocator;
m_data = rhs.m_data;
m_length = rhs.m_length;
m_capacity = rhs.m_length;
rhs.m_allocator = nullptr;
rhs.m_data = nullptr;
rhs.m_length = 0;
rhs.m_capacity = 0;
return *this;
}
static constexpr Vector<T> NullVector() noexcept {
Vector<T> output{};
output.m_allocator = &globalNullAllocator;
return output;
}
static Result<Vector<T>, FudStatus> withCapacity(size_t capacity, Allocator* allocator = &globalFudAllocator)
{
Vector<T> output{};
auto status = initializeWithCapacity(output, capacity, allocator);
if (status != FudStatus::Success) {
return status;
}
return output;
}
static FudStatus initializeWithCapacity(
Vector<T>& output,
size_t capacity,
Allocator* allocator = &globalFudAllocator)
{
if (output.m_data != nullptr) {
return FudStatus::AlreadyInitialized;
}
if (allocator == nullptr) {
return FudStatus::NullPointer;
}
if (capacity > SIZE_MAX / ElementSize) {
return FudStatus::ArgumentInvalid;
}
size_t requestedSize = capacity * ElementSize;
auto dataPtrResult = allocator->allocate(requestedSize, Alignment);
if (dataPtrResult.isError()) {
return dataPtrResult.getError();
}
output.m_allocator = allocator;
output.m_data = reinterpret_cast<T*>(dataPtrResult.getOkay());
output.m_length = 0;
output.m_capacity = capacity;
return FudStatus::Success;
}
static Result<Vector<T>, FudStatus> withSize(size_t count, Allocator* allocator = &globalFudAllocator)
{
Vector<T> output{};
auto status = initializeWithSize(output, count, allocator);
if (status != FudStatus::Success) {
return FudError{status};
}
return Okay<Vector<T>>{std::move(output)};
}
static FudStatus initializeWithSize(
Vector<T>& output,
size_t count,
Allocator* allocator = &globalFudAllocator)
{
if (output.m_data != nullptr) {
return FudStatus::AlreadyInitialized;
}
auto status = Vector::initializeWithCapacity(output, count, allocator);
if (status != FudStatus::Success) {
return status;
}
output.m_length = count;
for (size_t index = 0; index < count; ++index) {
const auto* ptr = new (output.m_data + index) T();
fudAssert(ptr != nullptr);
}
return FudStatus::Success;
}
template <typename Builder>
static Result<Vector<T>, FudStatus> withSizeFallible(
size_t count,
Builder&& builder,
Allocator* allocator = &globalFudAllocator)
{
Vector<T> output{};
auto status = initializeWithSizeFallible(output, count, std::forward<Builder>(builder), allocator);
if (status != FudStatus::Success) {
return FudError{status};
}
return Okay<Vector<T>>{std::move(output)};
}
template <typename Builder>
static FudStatus initializeWithSizeFallible(
Vector<T>& output,
size_t count,
Builder&& builder,
Allocator* allocator = &globalFudAllocator)
{
// using BuilderResult = decltype(std::forward<Builder>(builder)(T{}));
// static_assert(std::is_same_v<BuilderResult, FudStatus>);
auto status = Vector::initializeWithCapacity(output, count, allocator);
if (status != FudStatus::Success) {
return status;
}
output.m_length = count;
for (size_t index = 0; index < count; ++index) {
auto builderStatus{std::forward<Builder>(builder)(output.m_data[index])};
if (builderStatus != FudStatus::Success) {
return builderStatus;
}
}
return FudStatus::Success;
}
static Result<Vector<T>, FudStatus> from(const Vector<T>& rhs, Option<Allocator*> allocatorOption = NullOpt)
{
Allocator* allocator = nullptr;
if (allocatorOption.hasValue()) {
allocator = allocatorOption.value();
if (allocator == nullptr) {
return FudStatus::NullPointer;
}
} else {
allocator = rhs.m_allocator;
if (allocator == nullptr) {
return FudStatus::ArgumentInvalid;
}
}
fudAssert(rhs.m_length <= rhs.m_capacity);
auto spanResult = rhs.span();
if (spanResult.isError()) {
return spanResult.takeError();
}
Vector<T> output{};
auto status = Vector::initializeFromSpan(output, rhs.m_length, allocator);
if (status != FudStatus::Success) {
return status;
}
return output;
}
template <size_t Size>
static Result<Vector<T>, FudStatus> from(Span<const T, Size>& rhs, Allocator* allocator)
{
Vector<T> output{};
auto status = initializeFromSpan(output, rhs, allocator);
if (status != FudStatus::Success) {
return status;
}
return output;
}
template <size_t Size>
static FudStatus initializeFromSpan(Vector<T>& output, Span<const T, Size>& rhs, Allocator* allocator)
{
auto status = Vector::initializeWithCapacity(output, rhs.size(), allocator);
if (status != FudStatus::Success) {
return status;
}
output.m_length = rhs.m_length;
for (size_t index = 0; index < output.m_length; ++index) {
output.m_data[index] = rhs[index];
}
}
static Vector<T> move(Vector<T>&& rhs) noexcept
{
return Vector<T>{std::move(rhs)};
}
FudStatus copy(const Vector<T>& rhs);
FudStatus take(Vector<T>&& rhs);
[[nodiscard]] size_t size() const
{
return m_length;
}
[[nodiscard]] size_t capacity() const
{
return m_capacity;
}
Result<Span<const T>, FudStatus> span() const
{
using RetType = Result<Span<const T>, FudStatus>;
if (m_data == nullptr) {
return RetType::error(FudStatus::ObjectInvalid);
}
return RetType::okay(Span{m_data, m_length});
}
Result<Span<T>, FudStatus> span()
{
using RetType = Result<Span<T>, FudStatus>;
if (m_data == nullptr) {
return RetType::error(FudStatus::ObjectInvalid);
}
return RetType::okay(Span{m_data, m_length});
}
Result<Span<const T>, FudStatus> span(size_t count) const
{
using RetType = Result<Span<const T>, FudStatus>;
if (m_data == nullptr) {
return RetType::error(FudStatus::ObjectInvalid);
}
if (count > m_length) {
return RetType::error(FudStatus::ArgumentInvalid);
}
return RetType::okay(Span{m_data, count});
}
Result<Span<T>, FudStatus> span(size_t count)
{
using RetType = Result<Span<T>, FudStatus>;
if (m_data == nullptr) {
return RetType::error(FudStatus::ObjectInvalid);
}
if (count > m_length) {
return RetType::error(FudStatus::ArgumentInvalid);
}
return RetType::okay(Span{m_data, count});
}
Result<Span<const T>, FudStatus> span(size_t start, size_t count) const
{
using RetType = Result<Span<const T>, FudStatus>;
if (m_data == nullptr) {
return RetType::error(FudStatus::ObjectInvalid);
}
if (SIZE_MAX - start < m_length || start + count > m_length) {
return RetType::error(FudStatus::ArgumentInvalid);
}
return RetType::okay(Span{m_data + start, count});
}
Result<Span<T>, FudStatus> span(size_t start, size_t count)
{
using RetType = Result<Span<T>, FudStatus>;
if (m_data == nullptr) {
return RetType::error(FudStatus::ObjectInvalid);
}
if (SIZE_MAX - start < m_length || start + count > m_length) {
return RetType::error(FudStatus::ArgumentInvalid);
}
return RetType::okay(Span{m_data + start, count});
}
FudStatus reserve(size_t count)
{
if (count <= m_capacity) {
return FudStatus::Success;
}
if (m_allocator == nullptr) {
return FudStatus::ObjectInvalid;
}
if (count > SIZE_MAX / ElementSize) {
return FudStatus::ArgumentInvalid;
}
size_t requestedSize = count * ElementSize;
auto dataPtrResult = m_allocator->allocate(requestedSize, Alignment);
if (dataPtrResult.isError()) {
return dataPtrResult.takeError();
}
auto* dataPtr = reinterpret_cast<T*>(dataPtrResult.takeOkay());
for (size_t index = 0; index < m_length; ++index) {
const auto* ptr = new (dataPtr + index) T(std::move(m_data[index]));
fudAssert(ptr != nullptr);
m_data[index].~T();
}
auto status = FudStatus::Success;
if (m_capacity > 0) {
m_allocator->deallocate(reinterpret_cast<std::byte*>(m_data), m_capacity);
}
m_data = dataPtr;
m_capacity = count;
return status;
}
FudStatus resize(size_t count)
{
if (count == m_length) {
return FudStatus::Success;
}
if (m_allocator == nullptr) {
return FudStatus::ObjectInvalid;
}
if (count < m_length) {
for (size_t index = count; index < m_length; ++index) {
m_data[index].~T();
}
m_length = count;
return FudStatus::Success;
}
auto reserveStatus = reserve(count);
if (reserveStatus != FudStatus::Success) {
return reserveStatus;
}
for (size_t index = m_length; index < count; ++index) {
const auto* ptr = new (m_data + index) T();
fudAssert(ptr != nullptr);
}
m_length = count;
return FudStatus::Success;
}
FudStatus clear()
{
if (m_allocator == nullptr || m_data == nullptr) {
if (m_length > 0) {
return FudStatus::ObjectInvalid;
}
return FudStatus::Success;
}
for (size_t index = 0; index < m_length; ++index) {
m_data[index].~T();
}
m_length = 0;
return FudStatus::Success;
}
Result<std::reference_wrapper<T>, FudStatus> get(size_t index)
{
using RetType = Result<std::reference_wrapper<T>, FudStatus>;
if (m_data == nullptr) {
return RetType::error(FudStatus::ObjectInvalid);
}
if (index >= m_length) {
return RetType::error(FudStatus::IndexInvalid);
}
return RetType::okay(std::ref(m_data[index]));
}
Result<const std::reference_wrapper<const T>, FudStatus> ref(size_t index) const
{
using RetType = Result<const std::reference_wrapper<const T>, FudStatus>;
if (m_data == nullptr) {
return RetType::error(FudStatus::ObjectInvalid);
}
if (index >= m_length) {
return RetType::error(FudStatus::IndexInvalid);
}
return RetType::okay(std::cref(m_data[index]));
}
constexpr Option<T&> front()
{
if (m_length > 0) {
fudAssert(m_data != nullptr);
return m_data[0];
}
return NullOpt;
}
constexpr Option<const T&> front() const
{
if (m_length > 0) {
fudAssert(m_data != nullptr);
return m_data[0];
}
return NullOpt;
}
constexpr Option<T&> back()
{
if (m_length > 0) {
fudAssert(m_data != nullptr);
return m_data[m_length - 1];
}
return NullOpt;
}
constexpr Option<const T&> back() const
{
if (m_length > 0) {
return m_data[m_length - 1];
}
return NullOpt;
}
constexpr T* data() noexcept
{
return m_data;
}
constexpr const T* data() const noexcept
{
return m_data;
}
constexpr T* begin() noexcept
{
return m_data;
}
constexpr const T* begin() const noexcept
{
return m_data;
}
constexpr T* end() noexcept
{
return m_data + m_length;
}
constexpr const T* end() const noexcept
{
return m_data + m_length;
}
constexpr T& operator[](size_t index)
{
if constexpr (fudBoundsChecking) {
fudAssert(m_data != nullptr);
fudAssert(index < m_length);
}
return m_data[index];
}
constexpr const T& operator[](size_t index) const
{
if constexpr (fudBoundsChecking) {
fudAssert(m_data != nullptr);
fudAssert(index < m_length);
}
return m_data[index];
}
FudStatus pushBack(const T& value)
{
if (m_length == m_capacity) {
auto status = grow();
if (status != FudStatus::Success) {
return status;
}
}
const auto* ptr = new (m_data + m_length) T(value);
fudAssert(ptr != nullptr);
m_length++;
return FudStatus::Success;
}
FudStatus pushBack(T&& value)
{
if (m_length == m_capacity) {
auto status = grow();
if (status != FudStatus::Success) {
return status;
}
}
const auto* ptr = new (m_data + m_length) T(std::move(value));
fudAssert(ptr != nullptr);
m_length++;
return FudStatus::Success;
}
Result<T, FudStatus> popBack()
{
using RetType = Result<T, FudStatus>;
if (m_data == nullptr) {
return RetType::error(FudStatus::ObjectInvalid);
}
if (m_length == 0) {
return RetType::error(FudStatus::Empty);
}
auto result{RetType::okay({std::move(m_data[m_length - 1])})};
m_length--;
m_data[m_length].~T();
return result;
}
FudStatus eraseBack()
{
if (m_data == nullptr) {
return FudStatus::ObjectInvalid;
}
if (m_length == 0) {
return FudStatus::Empty;
}
m_length--;
m_data[m_length].~T();
return FudStatus::Success;
}
FudStatus insert(size_t index, const T& value)
{
if (index > m_length) {
return FudStatus::IndexInvalid;
}
if (index == m_length) {
return pushBack(value);
}
if (m_length == m_capacity) {
auto status = grow();
if (status != FudStatus::Success) {
return status;
}
}
const auto* ptr = new (m_data + m_length) T(std::move(m_data[m_length - 1]));
fudAssert(ptr != nullptr);
for (size_t backIndex = m_length - 1; backIndex > index; --backIndex) {
m_data[backIndex] = std::move(m_data[backIndex - 1]);
}
m_data[index] = value;
m_length++;
return FudStatus::Success;
}
FudStatus insert(size_t index, T&& value)
{
if (index > m_length) {
return FudStatus::IndexInvalid;
}
if (index == m_length) {
return pushBack(std::move(value));
}
if (m_length == m_capacity) {
auto status = grow();
if (status != FudStatus::Success) {
return status;
}
}
const auto* ptr = new (m_data + m_length) T(std::move(m_data[m_length - 1]));
fudAssert(ptr != nullptr);
for (size_t backIndex = m_length - 1; backIndex > index; --backIndex) {
m_data[backIndex] = std::move(m_data[backIndex - 1]);
}
m_data[index] = std::move(value);
m_length++;
return FudStatus::Success;
}
template <size_t Size>
FudStatus extend(Span<const T, Size> fixedSpan)
{
if (fixedSpan.data() == nullptr) {
return FudStatus::NullPointer;
}
if (std::numeric_limits<size_t>::max() - Size < m_length) {
return FudStatus::Failure;
}
if (m_length + Size > m_capacity)
{
auto status = grow();
if (status != FudStatus::Success) {
return status;
}
}
for (size_t spanIndex = 0; spanIndex < Size; ++spanIndex) {
const auto* ptr = new (m_data + m_length) T(fixedSpan[spanIndex]);
fudAssert(ptr != nullptr);
m_length++;
}
return FudStatus::Success;
}
FudStatus erase(size_t index)
{
if (index >= m_length) {
return FudStatus::IndexInvalid;
}
m_data[index].~T();
for (size_t fwdIndex = index; fwdIndex + 1 < m_length; fwdIndex++)
{
m_data[fwdIndex] = std::move(m_data[fwdIndex + 1]);
}
m_data[m_length - 1].~T();
m_length--;
return FudStatus::Success;
}
private:
FudStatus grow()
{
// See https://github.com/facebook/folly/blob/main/folly/docs/FBVector.md
size_t additional = m_capacity < 2 ? 1 : m_capacity / 2;
constexpr auto maxSize = std::numeric_limits<size_t>::max();
if (maxSize - additional * ElementSize < m_capacity * ElementSize) {
additional = maxSize - m_capacity * ElementSize / 2;
}
while (additional > 0) {
auto reserveStatus = reserve(additional + m_capacity);
if (reserveStatus == FudStatus::Success) {
break;
}
if (reserveStatus == FudStatus::AllocFailure) {
additional /= 2;
} else {
return reserveStatus;
}
}
if (m_length == m_capacity) {
return FudStatus::AllocFailure;
}
return FudStatus::Success;
}
FudStatus cleanup() noexcept
{
auto status = clear();
if (m_data != nullptr && m_allocator != nullptr) {
m_allocator->deallocate(reinterpret_cast<std::byte*>(m_data), m_capacity);
}
m_allocator = nullptr;
m_data = nullptr;
m_length = 0;
m_capacity = 0;
return status;
}
Allocator* m_allocator{&globalFudAllocator};
T* m_data{nullptr};
size_t m_length{0};
size_t m_capacity{0};
};
} // namespace fud
#endif
|